
DRAFT
ASP-I for ESAMS Software Quality Assessment

Update: 12/8/97 6.0-1 ESAMS v.2.7

DRAFT

6.0 SOFTWARE QUALITY ASSESSMENT

The purpose of the analysis described in this report is to support the verification of ESAMS
by analyzing the structure of its source code from a software engineering perspective. No
attempt was made in this analysis to analyze or evaluate the output of ESAMS.

6.1 MODEL DESCRIPTION

As with any software system with an active Product Improvement Program (PIP), ESAMS
has been released numerous times in many versions. The information in this section
describes the specific version that was the subject of this analysis. Table 6.0-1 lists the
pertinent release information of the version analyzed.

6.1.1 Functional Description

The program simulates an encounter between surface-to-air missile (SAM) system and a
single intruding aircraft. The primary model result is probability of target kill (Pk); however
ESAMS can examine other areas such as missile flight path, guidance characteristics, and
the effect of electronic countermeasures (ECM) and terrain on an engagement. ESAMS
simulates sensor lock-on, tracking, missile aerodynamic propulsion, guidance and control.
It computes Pk, missile distance and missile flight time.

6.1.2 Source Code Statistics

Appendix D contains a listing of source code files for the main programs, subroutines, and
functions that comprise ESAMS 2.7, ESAMS 2.7β and ESAMS 2.6.3β. File changes are
summarized in Tables 6.0-2 and 6.0-3.

TABLE 6.0-1. ESAMS Release Specifics.

NAME: Enhanced Surface-to-Air Missile Simulation

ACRONYM: ESAMS

VERSION: 2.7

DATE OF RELEASE: November 1995

DRAFT
Software Quality Assessment ASP-I for ESAMS

ESAMS v.2.7 6.0-2 Update: 12/8/97

DRAFT

1 A major change is defined as one that affects execution.
2 A minor change is one made for aesthetic reasons.

6.2 SOFTWARE QUALITY ASSESSMENT APPROACH

ESAMS 2.7 is a large program, consisting of two main program modules and over 700
subroutines, functions, include files and other forms of subordinate modules. One of the
main programs is contained in file PREPRO.FOR, a pre-processor as the name implies. The
other main program is contained in file ZINGER.FOR, the main program for ESAMS.
Unlike the main ESAMS program, PREPRO.FOR is largely self-contained with the main
program and eighteen (18) associated subroutines contained in the same file. The main
ESAMS program (ZINGER.FOR), on the other hand, is very modular with called
subroutines contained in individual files.

As a result of the size of ESAMS, and time and resource limitations, the analysis focused
on a sample set of 100 subroutines as listed in Appendix E. The results from this sample
were then augmented by analysis of another 100 modules listed in Appendix F. Even

TABLE 6.0-2. Source Code Statistics ESAMS 2.6.3β vs. ESAMS 2.7β.

NUMBER
OF FILES

PERCENT

ESAMS 2.6.3β 641

ESAMS 2.7β 656

no change 324 49.4%

major change 1 185 28.2%

minor change 2 67 10.2%

comments only 7 1.1%

new files 73 11.1%

files not used from ESAMS 2.6.3β 58

TABLE 6.0-3. Source Code Statistics ESAMS 2.7β vs. ESAMS 2.7.

NUMBER
OF FILES

NUMBER
OF BYTES

PERCENT

ESAMS 2.7β 656 3,541,187

ESAMS 2.7 656 8,356,090 236% larger

no change (except classification) 613 93.4%

major change 1 20 3.0%

minor change 2 18 2.8%

comments only 5 .8%

Classification

 Unclassified 425 65%

 Secret/NOFORN 231 35%

DRAFT
ASP-I for ESAMS Software Quality Assessment

Update: 12/8/97 6.0-3 ESAMS v.2.7

DRAFT

though this sample represents about one-third of the code, it should provide a reasonable
indication of the construction of the simulation as a whole.

The subjective nature of quality evaluations combined with personal preferences can result
in different assessments of the same code from different analysts. The balance of this
section describes the four measure of effectiveness (MOEs) chosen for the SQA and
attempts to define an appropriate set of contributing factors (criteria) for each MOE. Clear
descriptions of evaluation criteria and consistency of rating application by evaluators is
essential to a fair assessment of quality.

6.2.1 MOE #1 Use of Standards

6.2.1.1 Readability

Programmer style varies, but there should be certain consistencies from routine to routine
and they should be organized in a similar order. There should be a header, version number,
purpose, variable declaration, include statements, all with appropriate comments in a
format that is pleasing to the eye. Code should be neat and clear with appropriate comments
and line spacing as the programmer sees fit to make the code easy to read.

6.2.1.2 Modifiability

A well designed, modular structure that adheres to good software development practices,
with meaningful variable names and descriptive comments will allow a model to be easily
modified, updated or expanded to include additional features or capabilities. A high score
in modifiability is dependent on high scores in other criteria (e.g., readability, variable
declarations, naming conventions).

6.2.1.3 ANSI standards

Each module analyzed was compared to the American National Standard FORTRAN-77
X3.9-1978 standard for compliance. This standard specifies the form and establishes the
interpretation of programs expressed in the FORTRAN language. The purpose of this
standard is to promote portability of FORTRAN programs for use on a variety of data
processing systems. The requirements, prohibitions, and options specified in this standard,
generally refer to permissible forms and relationships for standard conforming programs.

6.2.2 MOE #2 Programming Conventions

6.2.2.1 Use of Comments and Headers

Comments should consist of large descriptive headers containing the version number of the
source code complete with authors name and dates that indicate when the code was written
with a revision history. This is not required but recommended. The header should also
contain a technical description defining the routines purpose and functionality. Variable
names, local and global should be listed, one to a line with clear definitions. Each
subroutine that is called should also be listed with a short description of its intent.
Embedded comment should be plentiful, clear and adequately provide a good
understanding of what is intended. Classification markings, top and bottom will also be
considered.

DRAFT
Software Quality Assessment ASP-I for ESAMS

ESAMS v.2.7 6.0-4 Update: 12/8/97

DRAFT

6.2.2.2 Use of Formatted Statements

The source code should be formatted to aid readability and modifiability. Variable
declarations, COMMON, TYPE and DATA statements should be located at the beginning
of the module, FORMAT and other non-executable statements should be at the end of the
module. Readability is improved if embedded comments are written in lower case with
blank lines appropriately placed to highlight certain areas. DO loops and IF blocks need to
be indented to improve readability and understandability.

6.2.2.3 Logical I/O Devices

All file I/O units should be initialized as variables with no reference to specific units by
number. The variable names should be meaningful and properly commented to facilitate
understanding.

6.2.2.4 Variable Declarations

The term variable is used to denote stored data items represented by symbolic names
associated with a storage location. Variables are classified by data type. Type declaration
statements explicitly define the data type of specified symbolic names. There are two forms
of type declaration statements: numeric type declaration (byte, logical, integer, real, double
precision, complex, and double complex) and character. Defaults will not be allowed, and
declared variables without comments will be rated poorly. The modules should all contain
the statement IMPLICIT NONE. The use of IMPLICIT NONE forces the programmer to
define each and every one of the variables in use before it is used. As a result, no default
variable types are accepted. This allows the code to be more easily understood and
modified.

6.2.2.5 Variable Initialization

Initializations may be performed in many ways in FORTRAN. Assignment statements
(e.g., VALUE=NUMBER), DATA statements, DIMENSION statements, and
EQUIVALENCE statements may all be used; however, the use of the latter is generally
considered poor practice. The expression NUMBER should be evaluated and verified that
it conforms to the range requirements of VALUE. Comments, as always, will contribute to
a higher rating.

6.2.2.6 Variable Naming Conventions

A well defined naming convention for variables should be established before coding
begins. Consistent, meaningful variable names with comments aid in the readability and
modifiability of a module.

6.2.2.7 Algorithm Clarity

Algorithms should be developed in a modular fashions. Long complicated equations should
be broken up into smaller, readable well commented sections. Each element in the
calculation should be executed on its own line if possible. No attempt was made to verify
the correctness of the algorithms examined.

DRAFT
ASP-I for ESAMS Software Quality Assessment

Update: 12/8/97 6.0-5 ESAMS v.2.7

DRAFT

6.2.3 MOE #3 Computational Efficiency

6.2.3.1 Mixed Mode Calculations

Combining integers and real numbers in a calculation, although not prohibited, can result
in errors due to the different internal representation of the two variable types if used
incorrectly. In general this is considered a poor programming practice and should not be
used without sufficient comments that describe why the author feels it is necessary in the
computation.

6.2.3.2 Use of Library Functions

FORTRAN library function names are called intrinsic function names. Intrinsic functions
perform frequently used mathematical computations. Intrinsic functions should be used in
complex calculations rather than the programmer re-writing code that is available for free.
This will avoid programming errors, keep the calculation shorter and is self documenting.

6.2.3.3 Nested Computations

DO and IF loops should be indented to improve readability. This is not required by the
compiler, but several levels of DO or IF statements not properly aligned is extremely
difficult to follow. Additionally, equal levels of complicated calculations should be lined-
up vertically with lower case comments, which improves readability and modifiability.

6.2.4 MOE #4 Maintainability

6.2.4.1 Portability

The ability to execute code on several different platforms is desirable. Machine dependent
algorithms and routines should be avoided.

6.2.4.2 Memory Management

In FORTRAN, there are many optimization techniques used by the compiler. One way is
to reduce I/O system overhead which is controlled by how you set up I/O operations in the
source code. For instance, an I/O list consisting of a single unformatted element does not
have to be buffered in the Run-Time Library buffers. Also, implied DO loops consisting of
a single unnested element are transmitted as a single call to the Run-Time library. To obtain
minimum I/O processing, the record length of direct access sequential organization files
should be a multiple of the device block size of 512 bytes. Also, memory space can be
optimized by controlling data size and code size, dead variable elimination, dead code
elimination and elimination of unreachable code.

6.2.4.3 Use of Common Blocks

One of the most effective controls available to the programmer is by the efficient use of
COMMON blocks and arrays. The programmer must exercise common sense design
techniques such as not defining an overly large array that isn’t used, or declaring variables
that are never referenced.

6.2.4.4 Modularity

Each subroutine or function should be short and to the point providing one specific purpose
clearly defined and documented.

DRAFT
Software Quality Assessment ASP-I for ESAMS

ESAMS v.2.7 6.0-6 Update: 12/8/97

DRAFT

6.2.4.5 Subroutine Traceability

An important part of documentation is to list in the header other subroutines that are called
by the routine you are evaluating, and what their function is. It is also important, when
looking at a particular routine, to know what the calling routine was. Being able to
understand the program flow from one routine to another, forward and backwards greatly
improves modifiability. It is understood that this may be difficult at times since many
routines may call the same subroutine, but some type of documentation is desirable.

6.3 RESULTS AND CONCLUSIONS

6.3.1 Summary

The static analysis conducted here lends itself to compiling metrics and will provide
valuable insight into how the code was developed and how easily others can understand the
programmers intent, it provides limited information on how well it performs. A more
dynamic evaluation should be conducted to fully evaluate and verify that the programmers
intent is successful upon execution.

Each of the modules within the sample set was critically inspected according to each of the
criteria listed beneath each MOE on the Software Evaluation Work Sheet. The compliance
levels for each criterion across all the modules in the sample set were tallied, and the
average was assigned to the performance level for that criteria.

6.3.2 Scoring Procedure

The average of each of the performance levels for each criteria is summarized in
Tables 6.0-4 and 6.0-5 for the first group of 100 routines evaluated (Appendix E) and
Tables 6.0-6 and 6.0-7 for the second group of 100 routines evaluated (Appendix F). A
perfect score of 5.00 was awarded to 6 of the 18 categories in group 1, which means all
100 routines were rated excellent in those 6 categories. A rating between 4.00 and 4.99 was
tabulated in the acceptable column and 3.99 and below in the poor practice column, of
which there were none.

Table 6.0-6 shows how the scores were computed in Appendix E. The same procedure was
used for Appendix F, which is summarized in Table 6.0-9. For example, if you take
Criterion #1 Readability under MOE #1, 58 of the 100 routines were rated acceptable at 4
points each totaling 232 points, and 42 of the 100 routines were rated excellent at 5 points
each totaling 210 points. The sum of 232 and 210 is 442 divided by 100 routines gives an
average of 4.42.

The sum of the four (4) MOEs totals 87.33 of a possible 90 points. Since a maximum of 90
is an odd number to relate to, (100% is more appropriate), it is easier to look at 87.33 points
being 97.03% of the 90 maximum possible points. Therefore, of the 100 modules
evaluated, they are 97% in compliance with the chosen criteria.

6.3.3 Conclusions

The developers of ESAMS 2.7 adopted excellent programming conventions and deserve
credit for their efforts. Large descriptive formatted headers with extensive comments were
at the beginning of 98 of the 100 modules evaluated. The analysis indicated that all code
adheres to the ANSI FORTRAN-77 standard, no mixed mode calculations were

DRAFT
ASP-I for ESAMS Software Quality Assessment

Update: 12/8/97 6.0-7 ESAMS v.2.7

DRAFT

encountered, library functions were used according to the criteria and all logical devices
were assign meaningful names. COMMON blocks were used effectively as well as
memory management. There were some GOTO statements found, but they were well
documented and clearly understood. Ratings didn’t suffer because of them. Most of the
modules were 2-3 pages in length.

Much of the source code was formatted nicely, but additional line spacing would have
greatly improved readability. Readability would also be improved if embedded comments
were in lower case, with source code written in upper case with appropriate line spacing.
Approximately half of the sample set was programmed this way. The lack of comments on
variable names was evident in a minority of cases, which made the code difficult to follow
when encountered.

All modules listed which subroutines they called, but only three of the one hundred
analyzed listed the calling routine for the module being examined. It is understood that
many routines may call the same module, but to improve modifiability one must know the
path from one module to another, both forward and back.

TABLE 6.0-4. ESAMS 2.7 Performance Analysis Results.

Criterion
Performance Level

Poor Acceptable Excellent

MOE #1 - Use of Standards: 4.71

Criterion #1: Readability 4.42

Criterion #2: Modifiability 4.72

Criterion #3: ANSI standards 4.98

MOE #2 - Programming Conventions: 4.90

Criterion #1: Use of comments and headers 4.80

Criterion #2: Use of formatted statements 4.88

Criterion #3: Logical I/O devices 5.00

Criterion #4: Variable declarations 4.84

Criterion #5: Variable initialization 4.90

Criterion #6: Variable naming conventions 4.94

Criterion #7: Algorithm clarity 4.91

MOE # 3 - Computational Efficiency: 4.99

Criterion #1: Mixed mode calculations 5.00

Criterion #2: Use of library functions 5.00

Criterion #3: Nested computations 4.96

MOE # 4 - Maintainability: 4.80

Criterion #1: Portability 5.00

Criterion #2: Memory management 5.00

Criterion #3: Use of COMMON blocks 5.00

Criterion #4: Modularity 4.95

Criterion #5: Subroutine traceability 4.03

DRAFT
Software Quality Assessment ASP-I for ESAMS

ESAMS v.2.7 6.0-8 Update: 12/8/97

DRAFT

TABLE 6.0-5. ESAMS 2.7 Performance Summary.

MOE #1 - Use of Standards 4.71

MOE #2 - Programming Conventions 4.90

MOE #3 - Computational Efficiency 4.99

MOE #4 - Maintainability 4.80

Average per MOE 4.85

Total Score 87.33

Relative Performance 97%

TABLE 6.0-6. ESAMS 2.7 Performance Analysis Scoring Worksheet.

Criterion
Performance Level

Poor Acceptable Excellent Score

MOE #1 - Use of Standards:

Criterion #1: Readability 58*4=232 42*5=210 442/100=4.42

Criterion #2: Modifiability 28*4=112 72*5=360 472/100=4.72

Criterion #3: ANSI standards 2*4=8 98*5=490 498/100=4.98

MOE #2 - Programming Conventions:

Criterion #1: Use of comments and headers 2*3=6 16*4=64 82*5=410 480/100=4.80

Criterion #2: Use of formatted statements 12*4=48 88*5=440 488/100=4.88

Criterion #3: Logical I/O devices 100*5=500 500/100=5.00

Criterion #4: Variable declarations 5*3=15 6*4=24 89*5=445 484/100=4.84

Criterion #5: Variable initialization 1*3=3 8*4=32 91*5=455 490/100=4.90

Criterion #6: Variable naming conventions 6*4=24 94*5=470 494/100=4.94

Criterion #7: Algorithm clarity 9*4=36 91*5=455 491/100=4.91

MOE # 3 - Computational Efficiency:

Criterion #1: Mixed mode calculations 100*5=500 500/100=5.00

Criterion #2: Use of library functions 100*5=500 500/100=5.00

Criterion #3: Nested computations 4*4=16 96*5=480 496/100=4.96

MOE # 4 - Maintainability:

Criterion #1: Portability 100*5=500 500/100=5.00

Criterion #2: Memory management 100*5=500 500/100=5.00

Criterion #3: Use of COMMON blocks 100*5=500 500/100=5.00

Criterion #4: Modularity 5*4=20 95*5=475 495/100=4.95

Criterion #5: Subroutine traceability 97*4=388 3*5=15 403/100=4.03

DRAFT
ASP-I for ESAMS Software Quality Assessment

Update: 12/8/97 6.0-9 ESAMS v.2.7

DRAFT

TABLE 6.0-7. ESAMS 2.7 Performance Analysis Worksheet.

Criterion
Performance Level

Poor Acceptable Excellent

MOE #1 - Use of Standards: 4.79

Criterion #1: Readability 4.67

Criterion #2: Modifiability 4.72

Criterion #3: ANSI standards 4.99

MOE #2 - Programming Conventions: 4.88

Criterion #1: Use of comments and headers 4.65

Criterion #2: Use of formatted statements 4.94

Criterion #3: Logical I/O devices 5.00

Criterion #4: Variable declarations 4.80

Criterion #5: Variable initialization 4.89

Criterion #6: Variable naming conventions 4.90

Criterion #7: Algorithm clarity 4.95

MOE # 3 - Computational Efficiency: 4.99

Criterion #1: Mixed mode calculations 5.00

Criterion #2: Use of library functions 5.00

Criterion #3: Nested computations 4.97

MOE # 4 - Maintainability: 4.77

Criterion #1: Portability 5.00

Criterion #2: Memory management 5.00

Criterion #3: Use of COMMON blocks 5.00

Criterion #4: Modularity 4.86

Criterion #5: Subroutine traceability 4.00

TABLE 6.0-8. ESAMS 2.7 Performance Summary.

MOE #1 - Use of Standards 4.79

MOE #2 - Programming Conventions 4.88

MOE #3 - Computational Efficiency 4.99

MOE #4 - Maintainability 4.77

Average per MOE 4.86

Total Score 87.34

Relative Performance 97%

DRAFT
Software Quality Assessment ASP-I for ESAMS

ESAMS v.2.7 6.0-10 Update: 12/8/97

DRAFT

TABLE 6.0-9. ESAMS 2.7 Performance Analysis Worksheet.

Criterion
Performance Level

Poor Acceptable Excellent Score

MOE #1 - Use of Standards:

Criterion #1: Readability 33*4=132 67*5=335 467/100=4.67

Criterion #2: Modifiability 28*4=112 72*5=360 472/100=4.72

Criterion #3: ANSI standards 1*4=4 99*5=495 499/100=4.99

MOE #2 - Programming Conventions:

Criterion #1: Use of comments and headers 10*3=30 15*4=60 75*5=375 465/100=4.65

Criterion #2: Use of formatted statements 6*4=24 94*5=470 494/100=4.94

Criterion #3: Logical I/O devices 100*5=500 500/100=5.00

Criterion #4: Variable declarations 7*3=21 6*4=24 87*5=435 480/100=4.80

Criterion #5: Variable initialization 11*4=44 89*5=445 489/100=4.89

Criterion #6: Variable naming conventions 10*4=40 90*5=450 490/100=4.90

Criterion #7: Algorithm clarity 5*4=20 95*5=475 495/100=4.95

MOE # 3 - Computational Efficiency:

Criterion #1: Mixed mode calculations 100*5=500 500/100=5.00

Criterion #2: Use of library functions 100*5=500 500/100=5.00

Criterion #3: Nested computations 3*4=12 97*5=485 497/100=4.97

MOE # 4 - Maintainability:

Criterion #1: Portability 100*5=500 500/100=5.00

Criterion #2: Memory management 100*5=500 500/100=5.00

Criterion #3: Use of COMMON blocks 100*5=500 500/100=5.00

Criterion #4: Modularity 14*4=56 86*5=430 486/100=4.86

Criterion #5: Subroutine traceability 100*4=400 400/100=4.00

